Evaluator
evals_hub.evaluator.classification_eval
ClassificationEvaluator
Source code in evals_hub/evaluator/classification_eval.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | |
evals_hub.evaluator.nli_eval
NLIEvaluator
Evaluator for NLI tasks for embedding models.
Source code in evals_hub/evaluator/nli_eval.py
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | |
get_metrics_at_best_f1(scores, labels, score_type='similarity')
Calculate the best f1 score and the associated threshold by iterating through examples
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
scores
|
ndarray
|
Scores - these can be distances or similarities |
required |
labels
|
ndarray
|
Ground truth labels |
required |
Returns:
| Type | Description |
|---|---|
dict[str, float]
|
dict[str, float]: The best f1 score and associated threshold, precision and recall |
Source code in evals_hub/evaluator/nli_eval.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | |
evals_hub.evaluator.reranking_eval
Reranker
Wrapper for both transformer-based and API-based reranker models. Supports embedding-based reranking and API-based reranking (e.g., Cohere Rerank 3.5).
Source code in evals_hub/evaluator/reranking_eval.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 | |
compute_reranking_metrics(queries, top_k)
Compute Mean Average Precision (MAP) and Mean Reciprocal Rank (MRR) metrics for reranking. Supports both embedding-based and API-based reranking.
Source code in evals_hub/evaluator/reranking_eval.py
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | |
create_api_reranker(model_name='cohere_rerank_3_5', api_key=None, base_url=None, langfuse_enable=False, langfuse_name='reranking_evaluation', langfuse_client=None)
classmethod
Convenience method to create an API-based reranker.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model_name
|
str
|
Name of the API model (e.g., "cohere_rerank_3_5") |
'cohere_rerank_3_5'
|
api_key
|
str | None
|
API key (if not provided, will use COHERE_API_KEY env var) |
None
|
base_url
|
str | None
|
Base URL for the API (if not provided, will use COHERE_BASE_URL env var) |
None
|
langfuse_enable
|
bool
|
Whether to enable Langfuse tracking |
False
|
langfuse_name
|
str
|
Name for Langfuse tracking |
'reranking_evaluation'
|
langfuse_client
|
object | None
|
Langfuse client instance |
None
|
Returns:
| Type | Description |
|---|---|
Reranker
|
Reranker instance configured for API-based reranking |
Source code in evals_hub/evaluator/reranking_eval.py
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 | |
embed_content(queries, max_length=None)
Embeds queries and their associated documents (both positive and negative) into vector space.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
queries
|
list[dict[str, list[str]]]
|
List of query dictionaries, where each dictionary contains: - 'query': string or list of strings representing the query - 'positive': list of strings representing positive (relevant) documents - 'negative': list of strings representing negative (irrelevant) documents |
required |
max_length
|
int | None
|
Maximum sequence length for document encoding. If None, uses model's default. Defaults to None. |
None
|
Returns:
| Type | Description |
|---|---|
tuple[ndarray, ndarray]
|
tuple[np.ndarray, np.ndarray]: A tuple containing: - all_query_embs: Array of query embeddings, shape (num_queries, embedding_dim) - all_docs_embs: Array of document embeddings, shape (num_total_docs, embedding_dim) where num_total_docs is the sum of positive and negative documents across all queries |
Source code in evals_hub/evaluator/reranking_eval.py
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | |
from_config(config)
classmethod
Create a Reranker instance from a configuration dictionary.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
config
|
dict
|
Configuration dictionary with reranking settings |
required |
Returns:
| Type | Description |
|---|---|
Reranker
|
Reranker instance configured according to the config |
Source code in evals_hub/evaluator/reranking_eval.py
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 | |
process_query_instance(instance, all_query_embs, all_docs_embs, query_idx, docs_idx, top_k)
Process a single query instance and calculate its reranking metrics. Supports both embedding-based and API-based processing.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
instance
|
dict[str, list[str]]
|
Dictionary containing query, positive and negative documents |
required |
all_query_embs
|
ndarray | None
|
Array of all query embeddings (None for API-based) |
required |
all_docs_embs
|
ndarray | None
|
Array of all document embeddings (None for API-based) |
required |
query_idx
|
int
|
Current index in query embeddings |
required |
docs_idx
|
int
|
Current index in document embeddings |
required |
top_k
|
int
|
K value for reciprocal rank calculation |
required |
Returns:
| Type | Description |
|---|---|
dict
|
dict containing metrics and updated indices |
Source code in evals_hub/evaluator/reranking_eval.py
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 | |
rerank_scores(query_emb, docs_emb)
Computes similarity scores between query and documents. Supports both embedding-based and API-based reranking.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
query_emb
|
Tensor | ndarray | list | str
|
Query embeddings tensor (for embedding-based) or query string (for API-based) |
required |
docs_emb
|
Tensor | ndarray | list | list[str]
|
Document embeddings tensor (for embedding-based) or list of document strings (for API-based) |
required |
Returns:
| Type | Description |
|---|---|
Tensor
|
torch.Tensor: Similarity scores between query and documents. |
Source code in evals_hub/evaluator/reranking_eval.py
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 | |
evals_hub.evaluator.text_embed_eval
TextEmbedEvaluator
Source code in evals_hub/evaluator/text_embed_eval.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | |
evaluate(queries, documents, relevances=None, top_k=10, max_length=None, prompt_name_query=None, prompt_name_doc=None, batch_size=32)
Evaluate the model on the given queries and documents. If relevances are provided, compute metrics using pytrec_eval.
Source code in evals_hub/evaluator/text_embed_eval.py
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | |
search(queries, documents, top_k=10)
Perform similarity search on the embedded content. This method should be implemented based on the specific requirements of the evaluation.
Source code in evals_hub/evaluator/text_embed_eval.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | |
evals_hub.evaluator.qa_eval
JudgeOutput
pydantic-model
Bases: BaseModel
Structured output for an LLM Judge model
Fields:
-
extracted_final_answer(str) -
reasoning(str) -
correct(Literal['yes', 'no']) -
confidence(float)
Source code in evals_hub/evaluator/qa_eval.py
38 39 40 41 42 43 44 | |
QAEvaluator
Source code in evals_hub/evaluator/qa_eval.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | |
generate_answers(instances, max_concurrency=None, langfuse_version_tag=None)
async
Generates answers for a given question set.
Source code in evals_hub/evaluator/qa_eval.py
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 | |
QAOutput
pydantic-model
Bases: BaseModel
Structured output for a QA model
Fields:
-
explanation(str) -
answer(str) -
confidence(str)
Source code in evals_hub/evaluator/qa_eval.py
24 25 26 27 28 29 | |